
Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12
http://www.jisajournal.com/content/5/1/12

RESEARCH Open Access

Decentralized group formation
Anna Chmielowiec, Spyros Voulgaris and Maarten van Steen*

Abstract

Imagine a network of entities, being it replica servers aiming to minimize the probability of data loss, players of online
team-based games and tournaments, or companies that look into co-branding opportunities. The objective of each
entity in any of these scenarios is to find a few suitable partners to help them achieve a shared goal: replication of the
data for fault tolerance, winning the game, successful marketing campaign. All information attainable by the entities is
limited to the profiles of other entities that can be used to assess the pairwise fitness. How can they create teams
without help of any centralized component and without going into each other’s way? We propose a decentralized
algorithm that helps nodes in the network to form groups of a specific size. The protocol works by finding an
approximation of a weighted k-clique matching of the underlying graph of assessments. We discuss the basic version
of the protocol, and explain how dissemination via gossiping helps in improving its scalability. We evaluate its
performance through extensive simulations.

Keywords: Web service composition; Distributed clique formation

1 Introduction
Ever since the Internet substantially facilitated the shar-
ing of distant resources, researchers have been pondering
on how to effectively and efficiently exploit the immense
collection of these resources. A well-known example are
Web pages as resources, which are crawled and copied to
centralized databases so that they can be used for search-
ing information. Likewise, with the advent of Web services
it became much easier to realize large and heterogeneous
infrastructures for large-scale computing, eventually lead-
ing to the OGSA architecture for grid computing [1].
These two examples illustrate two radically different
approaches for structuring the use of resources. Concep-
tually, when crawling the Web, resources are copied and
pulled into a centralized shared database for further pro-
cessing. In contrast, for grid computing, resources stay in
place (and often cannot even be moved), resulting in a
decentralized solution for their usage.

In this paper, we concentrate on organizing resources
under the assumption that they are dispersed across the
Internet, yet it is impossible, or undesirable, to copy or
move them to a centralized location. The specific orga-
nization that we are seeking is dividing a potentially
very large group of resources into nonoverlapping subsets

*Correspondence: m.r.van.steen@vu.nl
Department of Computer Sciences and The Network Institute, VU University,
De Boelelaan 1081A, 1081HV Amsterdam, The Netherlands

of the same size, also known as the k-clique matching
problem.

As an example, consider the case where a resource is
a replica server operating in the cloud, and we are seek-
ing to partition a dataset and replicate its parts for fault
tolerance. In practice, a high degree of fault tolerance
can be achieved if a data item is replicated across three
servers, provided that failures of those servers are mutu-
ally independent. This means that a data item should
not be replicated in the same data center, but be spread
across three different ones. We can model this problem by
organizing the servers into an overlay network, and repre-
senting that network as an undirected graph. The weight
of an edge represents the quality of the associated commu-
nication link, along with the level of failure independence
of its end nodes. We then compute a weight of a 3-clique
as the arithmetic (or sometimes the geometric) mean of
its edges. Obviously, the higher this weight, the better. By
finding a maximal 3-clique matching, we have essentially
partitioned the set of N replica servers into roughly N/3
highly reliable (distributed) virtual servers, each of which
can now be used to store one or several data items. Note
that our partitioning should be optimal: ideally, there is no
partitioning that will lead to a better set of more reliable
virtual servers.

© 2014 Chmielowiec et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: m.r.van.steen@vu.nl
http://creativecommons.org/licenses/by/4.0

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 2 of 18
http://www.jisajournal.com/content/5/1/12

As a completely different example, consider a multi-
player online game in which teams of k members each
compete in a tournament. Forming teams such that we
get the most challenging tournament again boils down to
finding a maximal k-clique matching in a set of N players,
where each of the roughly N/k cliques forms a team. A
weight between two players reflects how appropriate it is
to put them in the same team. So, typically, if two players
indicate their preference to play the role of a goalkeeper
in an online soccer competition, then typically the weight
between the two should be very low.

In a previous version of this paper [2], we showed how a
solution to the k-clique matching problem could be used
for optimal co-branding across the Web. Another appli-
cation is the optimal construction of composite Internet
services, services which are now often available only as
part of a package provided by ISPs [3].

As said, we assume in this paper that resources can-
not be copied or moved to a central location, or that it
is undesirable to do so, for example, because there is a
shared distrust in the integrity of the computations per-
formed by a third party. This implies that we need to solve
the k-clique matching problem in a decentralized manner.
Our main contribution is a fully decentralized algorithm
for solving this problem. The algorithm has been partly
described and evaluated in [2]. In this paper, we describe
important improvements that speed up the convergence
of the algorithm, allow us to handle cases where the set
of resources is subject to churn, and help in overcoming
the communication overhead of the protocol in its basic
version. In particular, we introduce the following modifi-
cation to our k-clique matching protocol: random-subset
heuristic, pruning, partial views, and gossiping of clique
weights.

The remainder of the paper begins with an overview
of related work in Section 2. Following is Section 3 in
which the system model for decentralized k-clique match-
ing of resources is further detailed and the problem of
finding k − 1 partnering resources is formalized. The core
of the paper is formed by the self-stabilizing distributed
algorithm, which is described in Section 4. In Section 5,
we present the optimizations that are useful in case of
a large dynamically changing set of resources. Section 6
presents results of our extensive simulations followed by
conclusions in Section 7.

2 Related work
Decentralized clustering based on weights between nodes
has been studied in the context of self-organization for
overlay construction in peer-to-peer (P2P) networks. Pro-
tocols such as T-Man [4] and Vicinity [5] assume weights
between nodes. Nodes have a fixed outdegree of k neigh-
bors, and periodically gossip with (some of) them to
encounter new potential neighbors and replace ones with

lower weight by ones having higher weight. When con-
verged, each node has links to its k highest weight neigh-
bors out of the whole network.

Although both this type of clustering and k-clique
matching result in optimal weight links prevailing over
suboptimal ones, they bear a fundamental difference. In
the former, a node can serve as a preferred neighbor
for any number of other nodes and formed links are
not required to be reciprocated; in the latter each node
can participate in exclusively one clique and all nodes
must agree on participation in the same clique (symmetry
constraint).

For k = 2 the k-clique matching problem reduces to the
well-known and extensively studied problem of matching
in graphs; a matching in a graph is defined as any sub-
set of nonadjacent edges, which basically are cliques of
size 2. In unweighted graphs, matching problems concen-
trate on finding a maximum matching (a matching with
the largest number of edges). For this problem, sequential
polynomial-time algorithms exist; for example, a maxi-
mum matching can be found in O(

√|V ||E|) time using
one of the algorithms by Micali and Vazirani [6], Blum [7],
or Gabow and Tarjan [8]. In our paper we focus solely
on weighted graphs. In such graphs, for each matching its
weight can be computed by summing the weights of the
edges comprising the matching, and the standard match-
ing problem is of finding a matching that is the heaviest,
referred to as maximum weighted matching. Generaliza-
tions exist. One of them is the problem of finding in
a graph the largest (the heaviest) subset of nonadjacent
subgraphs, each of which is isomorphic to some given
graph H . This type of problem is commonly referred to
as an H-packing [9-11], an H-matching [12,13] or an H-
partition [14]. In the special case when graph H is a clique
of size k, we obtain a k-clique matchinga problem that we
address in this paper.

Whereas finding a maximum weighted matching can be
done in polynomial time using, for instance, the algorithm
by Gabow [15] that runs in O(|V |(|E| + |V |log|V |)) time,
finding a maximum weighted k-clique matching for k ≥ 3
becomes an NP-hard problem. This follows directly from
work of Kirkpatrick and Hell in [14] which proves that
finding a perfect H-partition of graph G is NP-complete
if H contains a connected component with at least 3
vertices.

Moreover, when distributed algorithms are considered,
there does not exist any algorithm that finds a maxi-
mum weighted matching. Yet, a few distributed approx-
imation algorithms have been proposed, including the
1/2-approximation algorithm by Hoepman [16], the
O(log|V |)-time (1/2 − ε)-approximation algorithm by
Lotker at al. [17], and a (1 − ε)-approximation algorithm
by Nieberg [18]. From our perspective, the most interest-
ing are self-stabilizing algorithms for weighted matchings,

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 3 of 18
http://www.jisajournal.com/content/5/1/12

such as a 1/2-approximation algorithm by Manne and
Mjelde [19], which we extend in this paper to solve the
more general problem of weighted k-clique matching.
Whether other distributed approximation algorithms for
weighted matching can also be extended to solve weighted
k-clique matching remains an open question.

The research on distributed algorithms for H-packing
is even more scarce. For unweighted graphs, there exist a
few approximation algorithms for solving packing prob-
lems, for example, distributed H-packing algorithms for
unit-disk graphs by Czygrinow and Hańćkowiak [10] and
planar graphs by Czygrinow et al. [11]. Yet, to our best
knowledge, there is no work on distributed algorithms
for packing in weighted graphs. There is also little work
on sequential approximation algorithms for weighted
packing problems; a few algorithms that exist deal with
randomized finding of a triangle packing in weighted
complete graphs [20,21] and do not appear to be eas-
ily converted into a distributed algorithm or adapted to
finding k-clique packings for any k ≥ 3. With respect
to available research, our work is unique in attempting
to tackle the weighted k-clique matching problem in a
distributed fashion.

Table 1 summarizes the presented research on matching
problem and its generalizations.

3 The k-clique matching problem
We consider a set of N entities, be they commercial
brands, players in a multiplayer game, servers in a decen-
tralized pool of computers, or generally any type of
resources that we may want to group together. Each pair
of entities is marked with a weight, indicating the benefit
of combining these two entities.

Regarding weights, we make the following three
assumptions. First, they are nonnegative real numbers.
Second, they are a global function, in the sense that any

entity can assess the weight between any two entities in
the network. Third, weights are symmetric: the benefit
perceived by entity A in being combined with entity B is
the same as the one perceived by B in being combined
with A. Satisfying these assumptions is not difficult. For
example, in a co-branding case, each entity holds a profile
that describes customer attitudes towards a given brand.
The weight of the edge between any two entities can then
be computed based on a symmetric function generally
known by all entities.

The target is to group entities in cliques of k members
in such a way that the aggregate clique weights are maxi-
mized. This problem can be formalized using terms from
graph theory. We consider a graph G = (V , E). Each entity
corresponds to a single vertex in the graph. The edges con-
nect only those vertices whose corresponding entities can
be combined together. The weight of each edge tells how
good this combination is.

In such a graph, we are mostly interested in which k-
cliques can be created. A k-clique is a subgraph induced by
k vertices in which an edge exists between every two ver-
tices. Given the weights of the edges, it is possible to assess
the weight of a k-clique. Some of the popular metrics
include: sum of the edges, arithmetic or geometric mean,
and the weight of the heaviest/lightest edge. We inter-
pret the weight of the k-clique as an overall evaluation of
suitability of the k entities for forming a k-group.

Each entity would like to be part of exactly one such
group. Therefore, we want to partition the graph into
disjoint k-cliques.

Definition 1. (Weighted k-Clique Matching): Given a
graph G = (V , E) with nonnegative edge weights, a k-clique
matching is a subgraph of G whose components are cliques
of size k. The weight of the k-clique matching is defined as
the sum of the weights of all its k-cliques.

Table 1 Research on the matching problem and its generalizations

Problem Sequential algorithms Distributed approximation
exact Approximation algorithms

(2-clique) unweighted: O(E) 1/2-approx. [16,17,19],

matching O(
√

VE) [6-8], 1/2-approx. [22], (1 − ε)-approx. [18]

weighted: O(ElogV)

O(V(E + VlogV)) [8] 1/2-approx. [23]

k-clique NP-hard [14] randomized 1/k-approx.

matching in complete graphs in our previous

for k = 3 [20,21] paper [2]

H-matching NP-hard [14] — unweighted:

max snp-complete [12] - in unit-disk graphs [10],

- in planar graphs [11]

The mentioned algorithms are for the weighted version of the problem unless stated otherwise.

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 4 of 18
http://www.jisajournal.com/content/5/1/12

For k = 2, the problem of finding a 2-clique matching
in the graph is equivalent to finding a traditional match-
ing (a set of independent edges) in a graph. Its weighted
version (when the total weight of the 2-cliques is to be
maximized) is solvable in polynomial time: O(|V |(|E| +
|V |log|V |)) [15]. Yet for any k ≥ 3, a weighted k-clique
matching problem becomes NP-hard (see [14]).

Luckily, finding an optimal solution for the weighted
k-clique matching problem might not be always neces-
sary, or even desirable; finding an approximation might
be completely satisfactory. We can argue, for example,
that in the case of k-replication, each server is concerned
only with the quality of the cluster it is going to be part
of and has no interest in optimizing the quality of other
clusters. Thus, entities can be seen as being egocentric,
preoccupied only with their own welfare. Based on this
observation, we devise a distributed algorithm for finding
an approximation of the optimal k-clique matching.

4 The k-clique matching protocol
4.1 2-clique matching
Our protocol for creating a k-clique matching overlay
is inspired by the self-stabilizing algorithm by Manne
and Mjelde [19], which finds a matching which is a 1/2-
approximation of the optimal solution for the maximum
weighted matching problem — the total weight of the
matching found by this algorithm is at least 1/2 of the
optimal matching weight. In this algorithm, each node v
uses two variables: the first, mv, to store the id of the node
it would like to be matched with, the second, wv, to store
the weight of the edge connecting it to that node. Every
node tries to find the heaviest incident edge (by pointing
with mv to the other end of that edge), and the only rule
that nodes have to obey is that a node v cannot link to
a neighbor u if the value of wu is higher than the weight
of the edge joining v and u. This rule is meant to prevent
nodes from bound-to-fail attempts to match with neigh-
bors that have found heavier edges for matching. The final
matching M is composed of those edges whose ends point
to each other (mv = u and mu = v) and is achieved in at
most 2|M| + 1 rounds under a fair scheduler, where each
node has a chance to execute its step at least once per
round.

In this section, we show that the algorithm from [19] can
be easily generalized to find a weighted k-clique matching
(for any k ≥ 2) that is at most a factor k off from the max-
imum. Before we provide pseudo-code for this algorithm,
we first present a sequential algorithm by Preis [22] that
computes a 1/2-approximation of the weighted match-
ing. A high-level explanation of this algorithm will help us
gain intuition about how the self-stabilizing algorithms for
weighted matching and weighted k-clique matching work.

Preis’s sequential greedy algorithm is based on the
observation that selecting locally heaviest edges produces

the aforementioned approximation within a factor 1/2.
Its running time is O(|E|), which is faster than the run-
ning time of another sequential algorithm which creates a
matching by adding the remaining globally heaviest edge
(described in [23], with O(|E| · log|V |) running time).
The locally heaviest edge is defined as an edge whose
weight is at least as high as the weight of any incident
edge. The matching is constructed by iteratively adding
to the matching some locally heaviest edge from all the
edges remaining in E and removing this edge and all edges
incident to it from E until E becomes empty (see Figure 1).

Hoepman [16] describes how Preis’s algorithm can be
distributed deterministically. But we can also look at the
algorithm from [19] as a self-stabilizing variant of Preis’s
algorithm. Some node v, by choosing one of its neighbors,
u, and setting the weight of the edge 〈v, u〉 to variable wv,
eliminates from the matching all other edges that have v as
one of the ends and a weight smaller than wv. As a result
other neighbors of v are forced to look for a matching node
among their set of neighbors that does not include v. If an
edge is locally the heaviest, i.e., there is no available edge of
higher weight incident to it, then the nodes at the ends of
this edge would point to each other and as a consequence
this edge will become a part of the matching.

We can use the same reasoning to compute a weighted
k-clique matching by selecting locally heaviest k-cliques
and achieving an approximation factor of k.

4.2 k-clique matching
We denote by N(v) the set of all neighbors of v and by
w(U) the weight of the subgraph induced by the nodes in
U for any subset of nodes U ⊆ V ; in particular, w({v, u})
denotes the weight of an edge between two adjacent nodes
u and v.

To accommodate the algorithm from [19] for solving the
weighted k-clique matching problem, we start by chang-
ing the variables stored by each node. Instead of variable
mv, which kept track of the single neighbor’s id that node
v would like to be matched with, each node v will now
store in Cv a set of k − 1 ids of those neighbors with which
v wants to create a k-clique. Therefore, node v will now
store in variable wv the weight of the clique composed
of v and its k − 1 neighbors from Cv. This modifica-
tion has an obvious effect on which cliques we regard as

Figure 1 Sequential greedy algorithm for weighted matching.

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 5 of 18
http://www.jisajournal.com/content/5/1/12

matched: a clique induced by nodes v1, v2, . . . , vk is con-
sidered as matched only if for each vi (1 ≤ i ≤ k) variable
Cvi contains ids of the k − 1 remaining nodes, i.e. Cvi =
{v1, v2, . . . , vk} − {vi}. Thus, in a stable state each node v
that is part of some clique should have all other nodes
from that clique stored in its set Cv. Moreover, if in a sta-
ble state there is some node u that is not part of any clique,
its set Cu should be empty.

Because the algorithm differentiates between cliques
based solely on their weights, we need to guarantee that
the weight of each k-clique in the graph is unique and
that a total ordering of clique weights can be imposed.
Otherwise, the protocol may be unable to converge to a
correct k-clique matching due to some nodes becoming
stuck in livelock or deadlock situations, such as shown in
Figure 2. Here we have two adjacent 3-cliques �v1, v2, v3
and �v1, v3, v4 of equal weight. For nodes v1 and v3 either
of these cliques is equally attractive, while nodes v2 and
v4 can be part of only one clique each, �v1, v2, v3 or
�v1, v3, v4 respectively. This leads to four possible con-
figurations generated by choices made by v1 and v3: (a)
both v1 and v3 choose �v1, v2, v3, (b) both v1 and v3
choose �v1, v3, v4, (c) v1 chooses �v1, v2, v3, while v3
chooses �v1, v3, v4, and (d) v1 chooses �v1, v3, v4, while
v3 chooses �v1, v2, v3. Moreover, they can keep changing
their decision, as either choice is equally good. None of the
nodes in the graph can determine in which configuration
the system is at the moment based solely on the weights
of the cliques chosen by nodes. Thus, v2 and v4 are stuck
in their choice of v1 and v3 for their clique partners, and
at least one of them is not in the correctly matched clique
according to our definition from the previous paragraph.
As a result, none of these configurations leads to a correct
3-clique matching.

To avoid such problems, we assume that each node v
has a unique identifier (without the loss of coherence we
denote v’s identifier simply as v) and that a total order-
ing is imposed on these identifiers. With that assumption,
realization of uniqueness and total ordering of clique
weights is straightforward: the weight of each clique is

Figure 2 Two adjacent 3-cliques of equal weight impeding the
correct convergence of the protocol and 4 possible
configurations (a)–(d) that do not create a correct 3-clique
matching: the contents of Cv ’s are visualized by outgoing arrows.

extended with a sorted tuple of the ids of its nodes and a
lexicographical ordering is applied to these new weights.

Moreover, we assume that each node has readily avail-
able information on the weights of any edge between
itself and its neighbor and also between any pair of its
neighbors. This information is necessary but also suffi-
cient in order for a node to compute the weights of any
cliques it can be part of. We abstract here from how the
weights of these edges are obtained by each node. One
feasible solution, is that the weights can be computed
from the information a node has about its neighbors. The
effects of using different weights, but also different weight
distributions, is discussed in [24].

The pseudo-code of our weighted k-clique matching
protocol is presented in Figure 3. In an infinite loop each
node in the network looks for the most attractive k-clique
that it can become part of (we will formalize attractiveness
shortly). In order to discover such a clique, node v consid-
ers all

(|N(v)|
k−1

)
subsets of k − 1 neighboring nodes (line 3)

and keeps the most attractive one.
To assess the attractiveness attrv(U) of a clique formed

with nodes from set U , node v has to ensure that none
of these nodes is currently involved in a heavier clique,
because such a node would not be interested in joining
a clique of a smaller weight. To this end, we call a set
U ={u1, . . . , uk−1} of k − 1 neighbors proper if and only if
for each neighbor ui this set is heavier than any clique
found by that neighbor so far, i.e.,

∀ui ∈ U : w({v, u1, . . . , uk−1}) ≥ wui

We denote the fact that U is proper through the
predicate proper(v, U). Only cliques constructed with
proper combinations of neighbors can be considered as
admissible.

Subsequently, to compare any two sets of k − 1 neigh-
bors, nodes follow two straightforward rules. From the
perspective of node v, subset C′ is better than subset C if:

• C′ is proper and C is not, or
• both C′ and C are proper and w({v}+C′)>w({v}+C).

We can express it in a more concise way by, firstly,
defining the function attrv():

attrv(C) =
{

w({v} + C) if proper(v, C)

0 otherwise
In other words, the attractiveness of a set C for node v is

expressed as the weight of C after adding v, provided C is
indeed admissible, otherwise C should be ignored. We can
now check whether C′ is better than C by evaluating the
expression attrv(C′) > attrv(C). By executing lines 3–7,
node v chooses the most attractive clique, setting Cv and
wv accordingly.

Finally, node v sends the new value of wv to all of its
neighbors (line 10), allowing each neighbor to update

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 6 of 18
http://www.jisajournal.com/content/5/1/12

Figure 3 Self-stabilizing weighted k-clique matching protocol (executed by node v).

information on the clique it was (hoping to) participate in.
We need not assume that communication is reliable: mes-
sage loss will merely slow down the algorithm, but does
not affect its correctness.

To sum up, what every node is doing in each round
boils down to solving a version of the heaviest k-subgraph
problem in a graph induced by the node itself and all its
neighbors. What is different from the classical k-subgraph
problem is that: (a) we are interested only in k-subgraphs
that are cliques, (b) one of the nodes from the resulting
k-clique is fixed — the node itself must be a part of the
solution, (c) each of the neighbors imposes a constraint on
the minimum weight of a clique it can be part of.

5 Optimizations
In some applications of the algorithm it may happen that
the average size of a node’s neighborhood is relatively
high, for example, it is restricted only by the size of the
network, meaning that any k nodes in the network can,
in principle, create a clique. This may lead to problems
of applying the algorithm in its current form for several
reasons.

High computational complexity of a single round. In
each round every node has to examine

(|N(v)|
k−1

)
combina-

tions of k − 1 neighbors with which it could potentially
create a k-clique. If the number of neighbors is substantial
then the cost of executing the protocol from Figure 3 may
be prohibitively high even for small values of k.

Difficulty for a node to keep track of all other nodes
in the network. In the case of a dynamic network, in
which nodes may join and leave at any point in time, each
node needs to be aware of all these changes. Failing to
do so may prevent nodes from finding the best possible

cliques. For example, if nodes u, v, and w are the best can-
didates to form a 3-clique but each of them is unaware of
the existence of at least one of the other two nodes, they
would never be able to form a clique together and would
be forced to settle down for lesser options.

Messaging overload. For the protocol to converge in a
timely manner and even to work correctly, it is necessary
that all nodes have constantly updated information about
the clique weights pursued by their neighbors. Therefore,
in each round every node v sends out to all its neighbors
its current value of wv, which translates to broadcasting to
each node in each round the number of messages relative
to the size of the network.

5.1 Heuristics for finding the heaviest k-clique
To circumvent consideration of all possible k −1 neighbor
combinations, and thus, to reduce the high computational
complexity of a single round, a node can use a heuristic to
find its most attractive k-clique. The obvious candidates
for heuristics to be used are the heuristics that perform
well when trying to solve the heaviest k-subgraph prob-
lem, as that is in principle what each node is doing in every
round. The choice of the heuristic requires careful con-
sideration, as a wrong decision may result in suboptimal
solutions.

For example, consider a simple greedy heuristic that
constructs the k-clique for node v in the following man-
ner. First, node v becomes the first node of a new clique:
U ← {v}. Then k − 1 times, node u from N(v)− U is cho-
sen such that the sum of weights of edges between u and
nodes from U is maximal, and added to the new clique.
The (k − 1)-th node is chosen from N(v) − U with the
additional condition that U − {v} is proper. The biggest
disadvantage of using this heuristic is that it is simply too
deterministic: the first k − 2 neighbors are always fixed

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 7 of 18
http://www.jisajournal.com/content/5/1/12

(due to fixed edge weights), and in the choice of the (k−1)-
th neighbor lies the node’s only chance to find a promising
clique. The portion of the explored solution space is there-
fore hugely restricted for the node; part of it will never be
explored, and this can lead to nodes settling on subopti-
mal cliques or even not being able to find any clique to be
part of. As is so often the case, it is much better to explic-
itly randomize how nodes select candidate nodes to team
up with.

When incorporating a heuristic into the protocol, the
biggest challenge is not to lose the convergence along the
way. If the chosen heuristic was simply used to replace the
lines 3–7 in the algorithm from Figure 3, in each round
a node would most probably arrive at a different combi-
nation of neighbors to be set as Cv, quite often this new
combination would be also worse than the one from the
previous round. This was not the case in the original pro-
tocol from Figure 3, in which we had the guarantee that
in each round a subset of neighbors chosen by a node for
a clique would be reconsidered, simply because all of the
possible combinations are evaluated anew in every single
round. Therefore, to avoid discarding a good clique candi-
date found in the previous round when a heuristic is used,
in the modified protocol (see Figure 4) this clique is re-
evaluated (lines 3–5). If this clique is still proper, it will be
kept if no better clique is found.

Another modification is that nodes send out not only
the information about the weight of their currently pur-
sued clique but include in their message also the ids of the
nodes from this clique (line 18). This information is mostly

Figure 4 k-Clique matching protocol with a heuristic.

beneficial to the nodes that are the owners of the afore-
mentioned ids. These nodes are now able to improve their
own clique choice (lines 6–10). What happens here can be
interpreted as a parallelization of the heuristic computa-
tion, which greatly improves the convergence speed.

Lastly, in line 11, the heuristic algorithm is executed. As
a starting point for its execution, the value of C computed
in lines 3–10 may be utilized; or a randomly generated
value can be used. The best solution found is saved in Cv
and its weight in wv. The value of wv is then sent to all
the neighbors of node v. Moreover, nodes from Cv receive
also the information about the contents of Cv. Afterwards,
a new execution of the loop begins.

The fact that in each round a node repeats the heuris-
tic search, results in our protocol being transformed into
a multi-start version of the chosen heuristic. Each round
means the re-execution of the heuristic procedure with
a new (randomly generated) solution as a starting point.
When choosing a heuristic it is worth to take into account
this multi-start property together with the implicit par-
allelization achieved by collaboration of nodes towards
finding the best clique, mentioned in the previous para-
graph.

5.1.1 VNS heuristic
We tested the modified protocol using variable neigh-
borhood search (VNS) as a heuristic. The choice of this
particular heuristic for our protocol is motivated by the
work of Brimberg et al. who report in [25] that VNS con-
sistently achieved the best results in solving the heaviest k-
subgraph problem. The heuristics against which Brimberg
et al. tested VNS include [26]: multi-start local search,
tabu search, and scatter search. Each of these heuristics
could also be applied to or adopted by our protocol, but
investigating the differences of the protocol’s performance
under different heuristics falls out of scope of this paper.

VNS is a meta-heuristic that found its application in a
vast range of combinatorial and global optimization prob-
lems [27] including various graph problems, knapsack and
packing problems, scheduling problems, and data-mining
problems. Its name stems from the term used to describe
the subset of the solution space that, according to some
predefined metric, is close to a particular point of this
solution space. In our problem the solution space consists
of all possible (k − 1)-element combinations of a node’s
neighbors:

Sv = {C|C ⊆ N(v) with |C| = k − 1}.

A natural metric that can be imposed on this solution
space defines the distance between two combinations as
the number of nodes by which they differ, i.e.:

δ(C, C′) = |C − C′|.

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 8 of 18
http://www.jisajournal.com/content/5/1/12

Then the d-th neighborhood structure of a certain com-
bination C would consist of all combinations that differ by
at most d nodes from C:

NSd(C) = {C′|C′ ∈ Sv with δ(C, C′) ≤ d}.
Note that the neighborhood structure is not identical

with the neighborhood of node v. v’s neighborhood con-
sists of all other nodes that are adjacent to the node by
some edge, while the neighborhood structure consists of
(k − 1)-node subsets from v’s neighborhood.

The VNS algorithm is composed of two functions which
are executed in turns. First, the shake function modifies
the current solution C by randomly changing a few nodes
such that a new solution C′ belongs to the d-th neigh-
borhood structure of C. The goal of this step is to avoid
getting stuck in a local optimum. Second, the local search
function improves the new solution by trying to find a bet-
ter one in the 1st neighborhood structure of C′ (differing
by a single node). This function can either return the first
improvement found over C′ or the best improvement (in
our simulations the first improvement node was used). In
case no improvement is found d is increased, otherwise it
is set to some default value. The VNS algorithm executes
until a certain halting condition is reached, for example,
when the execution time exceeds some limit. For more
details on how the VNS was adopted to our protocol, we
refer to [2].

Applying the VNS heuristic proved to speed up the
convergence of the protocol. This can be accounted to
the fact that nodes inform each other not only about the
weight of the clique they are trying to create but also about
which nodes they are trying to create a clique with. This
way nodes can learn quickly about good cliques without
the need to search the entire solution space themselves.
Yet, the assumption that each node has full (up-to-date)
knowledge about the entire network (especially if the net-
work is large, changes in time, nodes come and go, etc) is
unrealistic. In Section 5.3 we present how this assumption
can be dropped.

5.1.2 Random subset heuristic
Another heuristic is based on a simple trick: if considering
all possible combinations of neighbors is computationally
too expensive, a node can evaluate only a subset of neigh-
bors in each round. The size of this subset can be set
in such a way that for the given value of k, a node has
enough resources to fully explore all k − 1 combinations
of nodes from the subset. To construct a subset, node v
can simply pick randomly the necessary number of neigh-
bors. Moreover, v can supplement the subset by adding
k − 1 neighbors that are in its current clique Cv. Once
the subset is created, the node executes the for-loop from
the basic protocol (see Figure 3 lines 3–7) and returns the
most attractive clique found.

The big advantage of this heuristic is that it is possible
to implement the construction of the subsets in a com-
pletely distributed fashion, which eliminates the necessity
of knowing all the nodes in the network by every node. We
expand on this matter in Section 5.3.

5.2 Pruning
Completely independently from the heuristics, nodes can
try to exploit their knowledge about the possible values of
edge weights. For example, if the weights of the edges are
bounded, node v can judge whether neighbor u has any
chances to become a clique partner prior to considering
any possible cliques this neighbor can be part of. To do
that, v computes the best possible weight of the clique that
it can create with u using the weight of the edge {v, u} and
the maximum possible value for the weights of remaining
edges wmax. Thus, when the weight of a clique is com-
puted as an arithmetic mean of the respective edges, the
best possible weight of the clique with nodes v and u is:

w′ =
w{v, u} +

((k
2
) − 1

)
wmax(k

2
)

If w′ is smaller than either wv or wu, node v can safely
ignore this neighbor for two reasons. First, when w′ < wv,
node v has already found a better clique than any possi-
ble clique with u could be. Second, if w′ < wu, node v
has no chances in creating a clique with u since u has a
better clique. Of course, because cliques pursued by nodes
can change, in each round a node has to re-evaluate which
nodes can be pruned. Nonetheless, once the set of neigh-
bors is pruned, node v can apply any heuristic to this
reduced set, which can greatly improve the convergence
speed. Yet, one has to keep in mind that with the increase
of k the impact of a single edge on the total weight of the
cliques diminishes. A single edge weight contributes on
average only 2/k(k −1) of the total clique’s weight. As a
consequence, pruning will bring the best results for small
values of k.

5.3 Partial views with pruning
When any two nodes in the network can be each other’s
neighbors, then a list of any node’s neighbors is limited
only by the size of the network. In large dynamic net-
works maintaining such hefty lists by each node might be
an expensive task. This is due not only to the sheer size
of these neighbor lists but also to their volatility. Our goal
is to remove the necessity of each node having complete
information about the entire network, keeping a node’s
chances high of finding the best clique.

To this end, we allow nodes to maintain fixed-sized lists
that contain only a relatively small number of all neigh-
bors. We refer to such a list as a partial view of a node.
Nodes present in the partial view of node v would be the

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 9 of 18
http://www.jisajournal.com/content/5/1/12

only ones among which v would be able to look for the
most promising clique in each round. Thus, we could look
at this type of the protocol as a variation of the random
subset heuristic for finding the best k-clique — in each
round a node has a small subset of all neighbors available,
in this subset v must find k − 1 neighbors with which it
can create the best clique. This means that nodes can sim-
ply follow the protocol from Figure 4, and the efficiency of
the clique matching will largely depend on the policy for
modifying partial views.

As our algorithm is decentralized we would prefer to
implement the partial views maintenance functionality
also in a fully decentralized way. For this purpose we use
a gossiping/epidemic protocol. Gossiping [28] is a simple,
lightweight and robust type of peer-to-peer protocol that
found its application in information dissemination, peer
sampling, resource management, and most importantly
from our perspective, topology construction. The frame-
work of a gossiping protocol used for creation and mainte-
nance of various overlays is summarized in Figure 5. Here,
each node keeps a list of nodes of a specific small size
c. The partial views are modified when nodes exchange
among each other portions (of size b) of their views.

Different rules incorporated into the three functions
from the framework will result in different overlays. In this
paper, we consider two implementations: Random and
Pruning, described in Figure 6. The goal of the Random
exchanges is to provide enough variety of the partial view
contents for the subsequent executions of clique match-
ing protocol. This enables nodes to discover all nodes in
the network and explore all possible neighbor combina-
tions. At the same time, the drawback of this approach
is that good candidates for clique members might be dis-
carded too easily and be replaced by other random nodes.
Conversely, the idea behind Pruning exchanges is that
nodes send out portions of their partial views that are

Figure 5 Gossiping protocol framework.

most “promising” from the recipient’s perspective. More-
over, nodes keep in their partial view only the “promising”
neighbors and we use the pruning measure described in
previous subsection to separate “promising” neighbors
from the rest. The risk of using Pruning lies in the possibil-
ity of partitioning the overlay network induced by partial
views if pruning turns out to be too greedy. Therefore, we
also investigate a third approach which is the combination
of the Random and Pruning approaches, in which sep-
arate gossiping protocols implementing the former two
approaches are stacked on top of each other (see Figure 7),
similarly to the Vicinity protocol described in [5].

Another advantage of using gossiping to implement par-
tial views is that it provides a natural mechanism for tack-
ling changes to the network by disseminating information
about newly joined nodes or by gradually removing from
partial views nodes that left the system. This is a desir-
able feature even considering that we are dealing with
servers (and not end-user systems) and thus that it is fair
to assume that churn will be very low. As further reported
in our previous work (see, e.g., [29]), gossiping is ideal
for effectively and efficiently handling the adverse effects
of churn. Further investigations about effects of churn on
our k-clique matching protocol with partial views is left
for future research.

5.4 Gossiping updates
The timely convergence of the k-clique matching proto-
col is contingent on nodes having up-to-date information
about the cliques pursued by their neighbors. Therefore,
in all versions of the protocol presented so far, each node
v after computing a new value of Cv, sends to all its neigh-
bors its new value of wv, which afterwards is used by v’s
neighbors to determine if they can conceivably propose a
better clique to v. However, this means that in each round
the number of messages sent through the network can
reach the order of |V |2.

Instead of such an expensive broadcast mechanism, we
can use a gossiping protocol for this purpose. In the previ-
ous section we have shown how a gossiping algorithm can
be used to maintain and modify partial views of nodes.
The same mechanism can be also used to spread the val-
ues of clique weights pursued by each node. To this end, a
separate gossiping protocol can run in the background.

This protocol follows the same framework from Figure 5
but instead of exchanging only the contact information to
nodes in the network, each item, stored in the view and
exchanged between nodes, consists of an id of some node
v, its contact information, the value of wv and a counter
indicating the age of this information. These age counters
are increased at the beginning of each loop iteration in the
active thread of the gossiping protocol, as well as upon an
exchange of information between nodes. If node v finds
itself to have two items of the same node id (e.g., as a result

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 10 of 18
http://www.jisajournal.com/content/5/1/12

Figure 6 Implementation details of Random and Pruning protocols.

of a gossip exchange) it keeps the item with the smaller
age. This way, older information about the clique weights
is seamlessly discarded.

The efficiency of the clique matching protocol will
largely depend on the speed at which the gossiping pro-
tocol propagates current information on clique weights
through the network. In Figure 8 we present details of
possible rules to incorporate into the three core functions
of the gossiping protocol. In Section 6, we will compare
the impact of various combinations of these rules on the
convergence of the clique matching protocol. We will also
examine other factors, such as the gossiping communica-
tion frequency.

Although we have mentioned that this protocol can run
in parallel, completely independently from other proto-
cols, there is also a potential for consolidating the dis-
semination of wv values with the dissemination of contact
information and the maintenance of partial views. We
leave the evaluation of these dissemination ideas to future
research.

6 Performance evaluation
6.1 Simulation setup
In the following simulations, we examine the efficiency of
the presented protocols in partitioning the network into
k-cliques. We focus on measuring convergence of various
versions of our k-clique matching algorithm. Note that
measuring the quality of created k-clique matchings as
compared to the optimal solution is not possible as it is
computationally infeasible to derive the latter.

The execution of simulations is based on the notion of
rounds. In each round, every node executes the entire
loop body exactly once. The ordering in which the nodes
execute their protocols in each round is entirely random.

The number of elapsed rounds is not always the best
time metric as it does not reflect the computational costs
incurred by nodes during a single round when different
versions of the protocol are used or even when compar-
ing the same protocol for different values of k. Therefore,
when needed we adopt the average number of cliques
considered by nodes since simulation start. This metric

Figure 7 The layered framework.

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 11 of 18
http://www.jisajournal.com/content/5/1/12

Figure 8 Implementation details of gossiping protocol for clique weights dissemination.

reflects more closely the differences between the compu-
tational complexities of the protocols.

All of our simulations are conducted on complete
graphs, which means that for each node v the neighbor set
N(v) is equal to V −{v}. As a result, any k nodes can poten-
tially form a clique. This guarantees that, irrespectively of
the distribution of edge weights, it is always possible to
find a k-clique matching that consists of n/k� cliques.

Each edge is assigned a weight drawn uniformly at ran-
dom from the interval (0, 1). The weight of a clique is
computed as the arithmetic mean of the respective edge
weights in the clique. The objective of the nodes in a net-
work is then to maximize the weight of the clique they are
going to be part of.

All simulations presented here were conducted using
PeerSim [30], an open-source simulator for peer-to-peer
protocols. Each presented curve is an average of 5 simu-
lations executed with the same parameters but different
random number generator seeds. In each simulation, all
nodes start without any clique chosen.

6.2 Performance of k-clique matching protocol
First, let us focus on the convergence speed of the basic
k-clique matching protocol from Figure 3. Figure 9(a)
depicts the percentage of nodes in cliques against the
number of elapsed rounds. In a network of 300 nodes, the
number of rounds necessary for all nodes to form disjoint
cliques increases with the size of the cliques. Nonetheless,
even for a clique size of k = 5, the time needed for full
convergence does not exceed 20 rounds.

Although the clique size, k, does not have a dramatic
effect on the protocol performance in terms of conver-
gence rounds, it does affect it with respect to the amount
of computation required by each node. This is depicted
in Figure 9(b), which plots the same metric (percent-
age of nodes in cliques) as a function of the number of
cliques considered on average by each node. Here, the

discrepancies of the computational load under different
values of k become clearly pronounced (notice the loga-
rithmic scale of the horizontal axis). In fact, the exponen-
tial increase in computational load comes as no surprise,
as each node has to evaluate all

(|N(v)|
k−1

)
possible cliques

in each round, as specified by the basic protocol from
Figure 3.

The next pair of graphs shows the differences in the con-
vergence speed of the basic protocol for different sizes of
networks. In Figure 10(a) we do not observe significant
discrepancies in the number of rounds needed by all nodes
to find their cliques. Yet again, as we take into account the
average number of cliques evaluated by each node, we can
observe that with each twofold increase in the size of the
network, the convergence time grows by a factor of 2k−1.
Again, this is the direct consequence of the fact that in
the basic algorithm every node evaluates

(|N(v)|
k−1

)
possible

cliques.
Note here that in case of a sparse graph the compu-

tational cost (as well as the communication one) of the
basic protocol would be much lower. For example, if the
size of each node’s neighborhood was in the order of the
logarithm of the network size, O(log|V |), the computa-
tional cost of a single round would be only in the order of
O(|V |) instead of O

(|V |k) (and each node would send only
O(log|V |) messages per round). For such graphs, our basic
protocol would be really efficient and would scale grace-
fully with increase in clique and/or network size. Yet, for
graphs where neighborhoods of nodes are much larger, we
need other strategies to lower the costs and preserve the
performance.

6.3 Performance with heuristics
To assess the performance of the k-clique matching pro-
tocol that uses heuristics, we compare it against the basic
version of the protocol. Figure 11 shows the convergence
(explained below) as a function of the average number of

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 12 of 18
http://www.jisajournal.com/content/5/1/12

Figure 9 Performance of the basic k-clique matching protocol; percentages of nodes matched into cliques for various values of k plotted
against: (a) number of rounds, (b) average number of cliques evaluated by a single node since the beginning of a simulation.

cliques considered per node, for 5 different versions of the
k-clique matching protocol: (1) the basic one, (2) using
the VNS heuristic, (3) using pruning and the VNS heuris-
tic, (4) using the random subset heuristic (RS), (5) using
pruning in combination with RS. The convergence of the
protocols is not expressed by the percentage of nodes in
cliques at a given point, but by the percentage of nodes in
cliques that has been reached at a given point and remains
above this level till the end of experiment. This results in
curves being monotonically increasing and is done only
for the sake of legibility. The size of the network is 300
nodes and k = 4. The size of the random subset is set to
40. The halting condition of the VNS protocol is based on
the number of cliques considered by a node. This number
is chosen in such a way that it provides a fair comparison

between VNS and random subset heuristics. Given that
with the random subset heuristic a node will consider in a
single round not more than

(40+k−1
k−1

)
cliques, the number

of cliques that a node using the VNS heuristic can check
in a single round is also set to

(40+k−1
k−1

)
.

In Figure 11, we see that both the VNS and the RS
heuristics outperform the basic k-clique matching proto-
col. This can be attributed to the fact that nodes make
much better use of the cliques formed by other nodes.
Moreover, adding pruning mechanisms speeds up the
convergence of each of the heuristics further. We see that
the difference between using VNS and the RS heuris-
tics is minimal, which means that we can often use the
simpler and cheaper RS heuristics to achieve the same
results. Apparently, having only a relatively small subset of

Figure 10 Performance of the basic k-clique matching protocol; percentages of nodes matched into 3-cliques for various network sizes
plotted against: (a) number of rounds, (b) average number of cliques evaluated by a single node since the beginning of a simulation.

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 13 of 18
http://www.jisajournal.com/content/5/1/12

Figure 11 Comparison between performance of the basic
k-clique matching protocol and the k-clique matching protocol
employing heuristics and pruning; plotted against the average
number of cliques evaluated by a single node since the
beginning of an experiment.

neighbors already achieves the major effect also attained
by VNS. A more comprehensive comparison between the
basic protocol, VNS with various halting conditions and
RS with various random subset sizes is presented in [24].

Figure 12 focuses on the performance of the VNS
heuristic for clique size 2, 3, and 4, and for networks
of 300, 600, 1200, and 2400 nodes. The halting condi-
tion for “VNS (M)” is set to

(M+k−1
k−1

)
considered cliques.

This means that “VNS (40)” (“VNS (60)”) considers almost
2k−1 (

3k−1) cliques more in each round compared to
“VNS (20)”. Firstly, we can observe that pruning signifi-
cantly speeds up the convergence of the protocol. Further,
we can observe that the convergence times get slightly
longer when the size of the network increases, but the
increase in the size of the clique has a much bigger nega-
tive impact. This can be attributed to the increase in the
solution space of the best clique for a given node, which
is equal to

(N−1
k−1

)
. When the size of the network grows

by a factor of two, the solution space increases by a fac-
tor of circa 2k−1; when the size of the clique increases by
just 1, the solution space increases by a factor of N/k. For
small values of k, the latter will be significantly larger than
the former. The increasing differences between results for
“VNS (20)”, “VNS (40)”, “VNS (60)” with pruning can be
explained in a similar manner.

We see a similar regularity in performance of the RS
heuristic (see Figure 13). Moreover, when compared to
VNS, the random subset heuristic seems to converge
slightly faster. This is especially encouraging in light of our
next simulations regarding partial views.

6.4 Performance with partial views
Interesting results have been obtained for the perfor-
mance of the k-clique matching protocol that uses partial

views. In Figure 14 we can see the comparison between
the partial views implementing Random, Pruning, and lay-
ered Random+Pruning approaches. We can observe that
layered Random+Pruning outperforms Random imple-
mentation for all clique and network sizes investigated,
which suggests that using pruning in combination with
some randomness to maintain partial views does help in
the convergence of our k-clique matching protocol.

At the same time, we can see curious results for the
Pruning implementation. For k = 2 it performs worse
than both Random and Random+Pruning; for k = 3 it
starts to perform better than Random across all network
sizes but is still worse than Random+Pruning; finally, for
k = 4 it starts to outperform also Random+Pruning.
The explanation lies in the close dependency between the
size of the clique and the strength of pruning, as hinted
already in Section 5.2. For k = 2, pruning is very effi-
cient but this is exactly the source of the problem. At the
beginning of a simulation, the situation in the network is
very unstable and many cliques are created and broken
from round to round. Pruning acts then over-zealously,
discarding from partial views nodes that are potentially
very attractive but for this brief moment are unavailable or
uninteresting. With the increase of the clique size, prun-
ing becomes more and more relaxed and its performance
improves. Nonetheless, to prevent hyperactivity of prun-
ing, one might consider disabling it in the early stages of
algorithm execution and enable it only once the system
starts to settle down. We leave for future research investi-
gation of how nodes could recognize the right moment to
switch on pruning.

When we compare the convergence times of the simula-
tions with partial views with Random implementation (see
Figure 14) and the simulations of random subset heuristic
without pruning, we do not observe any major discrep-
ancies. To the contrary, the results for partial views with
Pruning differ highly from the results for random sub-
set heuristic with pruning. In all setups, adding pruning
to random subset heuristic improved the convergence of
the protocol significantly. This was not the case for partial
views with Pruning. This differences can be explained by
the fact that in case of the random subset heuristic nodes
have the knowledge of all other nodes in the network and
apply pruning to the full list of nodes anew at the begin-
ning of each round, thus removing from a consideration
a node has the effect only for duration of a single round.
Conversely, if node decides to replace in its partial view
one node with another, it must reckon that it might take
some time before it will stumble upon this node again.

6.5 Performance when gossiping clique weights
We start our evaluation of the gossiping protocol for
clique-weight dissemination by comparing the effective-
ness of various implementations of the two core methods

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 14 of 18
http://www.jisajournal.com/content/5/1/12

Figure 12 Number of rounds needed by k-clique matching using VNS to reach and remain over the level of 95% of nodes in cliques over
different network sizes (a)–(c) and an example of convergence (d).

selectNode() and selectItemsToSend. In Figure 15
we can see simulation results of the basic k-clique match-
ing protocol that, instead of broadcasting new clique
weight values, uses a gossiping protocol to disseminate
this information. Each iteration of the k-clique match-
ing protocol loop is followed by a single execution of
the active thread loop of the gossiping protocol. The
simulations have been performed on a network of 300
nodes and for k = 3. The size of the buffer for the
gossiping protocol has been set to 10. Each curve corre-
sponds to a different combination ofselectNode() and
selectItemsToSend implementations, as detailed in
Section 5.4.

In Figure 15 we can distinguish four different groups
of curves. The fastest convergence times have been
achieved, when selectItemsToSend() chooses the
youngest items from the view, and selectNode() re-
turns either the oldest or a random node. For the

same two implementations of selectNode() but
with selectItemsToSend() returning random items,
the convergence of our k-clique matching proto-
col slows down almost twofold. Moreover, when
selectItemsToSend() returns the oldest items, the
protocol converges even more slowly and does not man-
age to achieve 100% in the first 1000 rounds. Yet, the worst
results have been obtained for selectNode() that re-
turns the node from the youngest item, for any of the
implementations of selectItemsToSend(); the
k-clique matching protocol gets stuck at 30%.

These results can be explained by considering the role
of the age counter attached to every item. This counter
coincides with the freshness of the clique weight informa-
tion. Therefore, when nodes choose the youngest items
in selectItemsToSend(), they contribute to the dis-
semination of the most up-to-date information about
other nodes’ clique weights. On the other hand, when a

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 15 of 18
http://www.jisajournal.com/content/5/1/12

Figure 13 Number of rounds needed by k-clique matching using random subset heuristic to reach and remain over the level of 95% of
nodes in cliques over different network sizes (a)–(c) and and example of convergence (d).

node selects the node from the youngest item as the next
node to communicate with (via selectNode()) it falls
in to the trap of exchanging information with the same
node over and over again; when a node selects items to
send, it always adds an item with its own clique weight;
this item is going to become the youngest item in the view
of the recipient.

Even with the most efficient combination of
selectNode() and selectItemsToSend() imple-
mentations, k-clique matching using gossiping to
disseminate clique weight information is significantly
(over 30 times) slower than its counterpart that uses
broadcast. Nonetheless, the convergence can be improved
by increasing the number of items exchanged by nodes
between any two executions of k-clique matching proto-
col loop. This can be done by either increasing the number
of items exchanged in every gossiping communication or

by increasing the frequency of the gossiping protocol rel-
atively to the k-clique matching protocol. Here we present
the results for the latter.

First, note that when broadcast is used, a node has to
send out N − 1 messages with its new clique weight in
every round. At the same time, when gossiping is used in
every round each node initiates only one exchange and,
thus, on average it is also contacted by one other node.
As a result, each node sends out the number of items
equal to twice the size of the gossiping buffer. If the fre-
quency of gossiping relatively to the k-clique matching
protocol is increased, the average number of items sent
out will also increase linearly to the frequency increase.
The differences between the message load of broadcast
and gossiping with different frequencies is depicted in
Figure 16(a): the network size equals 300 and the size
of the gossiping buffer is set to 10. Furthermore, in

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 16 of 18
http://www.jisajournal.com/content/5/1/12

Figure 14 Number of rounds needed by k-clique matching using partial views to reach and remain over the level of 95% of nodes in
cliques over different network sizes (a)–(c) and and example of convergence (d).

Figure 15 Comparison between various implementations of clique weight gossiping core functions.

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 17 of 18
http://www.jisajournal.com/content/5/1/12

Figure 16 Comparison between various implementations of clique weight gossiping core functions: message load (a) and slowdown
factor (b) versus gossiping frequency.

Figure 16(b) we can see that the convergence speed of
the k-clique matching protocol with gossiping of clique
weights improves exponentially. This shows that gossiping
is a viable alternative to the brute force broadcast of clique
weights.

7 Conclusions
In this paper we presented a protocol that finds an approx-
imation of a k-clique matching in the network. The proto-
col can be used to divide entities in the network into fixed
size groups, based on the pairwise assessments between
nodes. The final partitioning emerges from nodes’ local
decision on which neighbors to link to.

Although the convergence of the protocol in its basic
form in terms of rounds looks very attractive, there are
hidden costs of the protocol imposed on each of the
nodes in terms of computational complexity related to the
evaluation of all possible combinations of neighbors per-
formed in each round. To elevate these costs we proposed
that nodes use a heuristic to compute their new choice
of k − 1 neighbors instead of performing a full search
over the solution space. The two heuristics that we used
were (1) variable neighborhood search heuristic that was
reported to outperform other heuristics for finding heav-
iest k-clique and (2) a simple random subset heuristic. As
our simulations show, the protocol using any of these two
heuristics achieves a converged state faster than the orig-
inal protocol. We attribute these results to the fact that
the nodes share their best clique with its other members,
which significantly speeds up the search for the best clique
by implicit parallelization of computations. In contrast,
in the basic version on the protocol, nodes perform their
computations fully on their own and than only agree on
the clique’s weight.

To further improve the performance of the protocol,
we employed a pruning mechanism that temporarily (for
the period of a single round) removes from consideration
those neighbors that have no prospects for participating in
a clique better than the current one. We validated by sim-
ulations that combining heuristics with pruning performs
better than applying heuristics alone.

The fact that the random sample heuristic performed
equally well as a more elaborate variable neighborhood
search heuristic, led us to exploring a variation of the
protocol where each node keeps only a subset of all its
neighbors in its local memory (creating a partial view of
the full neighbor set). To discover new neighbors nodes
periodically exchange parts of their partial views. Thus
in each round, similarly to the random subset heuris-
tic case, they consider a different subset of neighboring
nodes. This approach is especially attractive for the sce-
narios in which the set of neighbors is equivalent with the
set of nodes in the network and the assumption that nodes
know all their neighbors would be too strict. The simula-
tions confirmed that the partial views approach provides
performance indistinguishable from the random subset
heuristic.

Independently from these improvements, we have also
investigated to what extent the broadcast communica-
tion between the nodes in the protocol can be replaced
by other methods of information dissemination through
the network. The initial results of the use of gossiping
protocol instead of broadcast show the viability of this
approach and its tradeoff in terms of slower convergence
times.

In our future work we plan to focus on extending the
protocol to support formation of cliques of different sizes
and relaxing the constraint that each node can be part of

Chmielowiec et al. Journal of Internet Services and Applications 2014, 5:12 Page 18 of 18
http://www.jisajournal.com/content/5/1/12

only one clique, by allowing nodes to set their own limits
on the number of cliques they are interested to participate
in.

Endnote
aWe adopted the terminology of the k-clique matching

from [12] where Kann uses the term H-matching to
describe a set of disjoint subgraphs in a given graph
where each of these subgraphs is isomorphic to H . This
term is also used by Crescenzi and Kann in the highly
cited [13]. After a more thorough search of related work
we observe that the term H-packing is more widely used
to describe this notion. Nonetheless, to stay consistent
with our previous paper, we keep our terminology of
k-clique matching.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AC is the main contributor of this work, which was undertaken as part of her
Ph.D. studies. She is also the author of a first version of this paper. SV has been
daily supervisor for AC, with main contributions to the design of the
algorithms, notably concerning extensions including gossiping. MvS has been
supervisor for AC, contributing to all work reported in this paper. He is the
main author of the revised version of this paper when submitting it to JISA. All
authors have read and approved the final manuscript.

Received: 29 May 2014 Accepted: 15 September 2014

References
1. Foster I, Berry D, Djaoui A, Grimshaw A, Horn B, Kishimoto H, Maciel F,

Savva A, Siebenlist F, Subramaniam R, Treadwell J, Von Reich J (2006)
The Open Grid Services Architecture, Version 1.5. GGF Informational
Document GFD-I.080

2. Chmielowiec A, van Steen M (2010) Optimal decentralized formation of
k-member partnerships. In: SASO 2010 proceedings of the 4th, IEEE
international conference on self-adaptive and self-organizing systems.
IEEE Computer Society, Washington DC. pp 154–163.
doi:10.1109/SASO.2010.14

3. Chmielowiec A, Pierre G, Gordijn J, van Steen M (2008) Technical
challenges in market-driven automated service provisioning. In: MW4SOC
‘08: proceedings of the 3rd workshop on middleware for service oriented
computing. ACM, New York. pp 25–30. doi:10.1145/1462802.1462807

4. Jelasity M, Montresor A, Babaoglu O (2009) T-man: gossip-based fast
overlay topology construction. Comput Netw 53(13):2321–2339.
doi:10.1016/j.comnet.2009.03.013

5. Voulgaris S (2006) Epidemic-based self-organization in peer-to-peer
systems. PhD thesis. Vrije Universiteit, Amsterdam, The Netherlands

6. Micali S, Vazirani VV (1980) An o(
√

(|v|)|e|) algoithm for finding maximum
matching in general graphs. In: SFCS ‘80: proceedings of the 21st annual
symposium on foundations of computer science. IEEE Computer Society,
Washington, DC. pp 17–27. doi:10.1109/SFCS.1980.12

7. Blum N (1990) A new approach to maximum matching in general graphs.
Automata Languages Program 443:586–597. doi:10.1007/BFb0032060

8. Gabow HN, Tarjan RE (1991) Faster scaling algorithms for general graph
matching problems. J ACM 38(4):815–853. doi:10.1145/115234.115366

9. Hell P, Klein S, Nogueira LT, Protti F (2005) Packing r-cliques in weighted
chordal graphs. Ann Oper Res 138:179–187

10. Czygrinow A, Hańćkowiak M (2007) Distributed approximations for
packing in unit-disk graphs. Distr Comput 4731:152–164.
doi:10.1007/978-3-540-75142-7_14

11. Czygrinow A, Hańćkowiak M, Wawrzyniak W (2008) Distributed packing in
planar graphs. In: Proceedings of the twentieth annual symposium on

parallelism in algorithms and architectures. SPAA ‘08. ACM, New York.
pp 55–61. doi:10.1145/1378533.1378541

12. Kann V (1994) Maximum bounded h-matching is max snp-complete.
Inform Process Lett 49(6):309–318. doi:10.1016/0020-0190(94)90105-8

13. Crescenzi P, Kann V (1998) A compedium of NP optimization problems.
http://www.nada.kth.se/~viggo/problemlist/compendium.html

14. Kirkpatrick DG, Hell P (1978) On the completeness of a generalized
matching problem. In: STOC ‘78 proceedings of the tenth annual ACM
symposium on theory of computing. pp 240–245

15. Gabow HN (1990) Data structures for weighted matching and nearest
common ancestors with linking. In: SODA ‘90: proceedings of the first
annual, ACM-SIAM symposium on discrete algorithms. Society for
Industrial and Applied Mathematics, Philadelphia. pp 434–443

16. Hoepman J-H (2004) Simple Distributed Weighted Matchings.
http://arxiv.org/abs/cs/0410047

17. Lotker Z, Patt-Shamir B, Pettie S (2008) Improved distributed approximate
matching. In: SPAA ‘08: proceedings of the twentieth annual symposium
on parallelism in algorithms and architectures. ACM, New York.
pp 129–136. doi:10.1145/1378533.1378558

18. Nieberg T (2008) Local, distributed weighted matching on general and
wireless topologies. ACM, New York. doi:10.1145/1400863.1400880

19. Manne F, Mjelde M (2007) A self-stabilizing weighted matching
algorithm. In: Stabilization, safety, and security of distributed systems.
LNCS, vol 4838/2007. pp 383–393. doi:10.1007/978-3-540-76627-8_29

20. Hassin R, Rubinstein S (2006) An approximation algorithm for maximum
triangle packing. Discrete Appl Math 154(6):971–979

21. Chen Z-Z, Tanahashi R, Wang L (2009) An improved randomized
approximation algorithm for maximum triangle packing. Discrete Appl
Math 157(7):1640–1646. doi:10.1016/j.dam.2008.11.009

22. Preis R (1999) Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs. In: In STACS 99: proceedings
symposium on theoretical aspects of computer science. Springer, Berlin.
pp 259–269. doi:10.1007/3-540-49116-3_24

23. Avis D (1983) A survey of heuristics for the weighted matching problem.
Networks 13:475–493. doi:10.1002/net.3230130404

24. Chmielowiec A (2014) Decentralized k-clique matching. PhD thesis. Vrije
Universiteit Amsterdam

25. Brimberg J, Mladenovic N, Urosevic D, Ngai E (2009) Variable
neighborhood search for the heaviest k-subgraph. Comput Oper Res
36(11):2885–2891. doi:10.1016/j.cor.2008.12.020

26. Gendreau M, Potvin J-Y(eds.) (2010) Handbook of
metaheuristicsInternational, Series in Operations Research & Management
Science, vol. 146. Springer, New York. doi:10.1007/978-1-4419-1665-5

27. Hansen P, Mladenović N, Moreno Pérez JA (2010) Variable
neighbourhood search: methods and applications. Ann Oper Res
175(1):367–407. doi:10.1007/s10479-009-0657-6

28. Kermarrec A-M, van Steen M (2007) Gossiping in distributed systems.
SIGOPS Oper Syst Rev 41(5):2–7. doi:10.1145/1317379.1317381

29. Jelasity M, Voulgaris S, Guerraoui R, Kermarrec A-M, van Steen M (2007)
Gossip-based peer sampling. ACM Trans Comput Syst 25(3):8.
doi:10.1145/1275517.1275520

30. Jelasity M, Montresor A, Jesi GP, Voulgaris S The Peersim Simulator.
http://peersim.sourceforge.net/

doi:10.1186/s13174-014-0012-2
Cite this article as: Chmielowiec et al.: Decentralized group formation.
Journal of Internet Services and Applications 2014 5:12.

http://www.nada.kth.se/~viggo/problemlist/compendium.html
http://arxiv.org/abs/cs/0410047
http://peersim.sourceforge.net/

	Abstract
	Keywords

	Introduction
	Related work
	The k-clique matching problem
	The k-clique matching protocol
	2-clique matching
	k-clique matching

	Optimizations
	High computational complexity of a single round.
	Difficulty for a node to keep track of all other nodes in the network.
	Messaging overload.

	Heuristics for finding the heaviest k-clique
	VNS heuristic
	Random subset heuristic

	Pruning
	Partial views with pruning
	Gossiping updates

	Performance evaluation
	Simulation setup
	Performance of k-clique matching protocol
	Performance with heuristics
	Performance with partial views
	Performance when gossiping clique weights

	Conclusions
	Endnote
	Competing interests
	Authors' contributions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 793.440]
>> setpagedevice

